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ScienceDirect
The requirement for removing partially hydrogenated oils

(PHOs) in food products by the U.S. Food and Drug

Administration (FDA) is challenging the food industry to seek

out healthy replacements that do not change the physical and

sensory properties of end products. This article reviews novel

strategies to structure liquid oils as PHO alternatives. The oil

structuring mechanisms of ethylcellulose oleogels, plant-based

wax oleogels, and monoglyceride-structured emulsions are

discussed in detail. The structural and mechanical properties of

such systems can be tailored to mimic that of PHO based fat

systems. These oil-structuring methods show promise for

applications in PHO-free products.
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Background
The US FDA recently announced its decision to finalize

the removal of the GRAS (generally recognized as safe)

status from partially hydrogenated oils (PHOs), and have

provided a three-year mandatory compliance period, end-

ing June 18, 2018. This decision was made in an attempt

to eliminate industrially-produced trans-fats from the

food supply, as PHOs presently represent the most sig-

nificant dietary source of artificial trans-fatty acids. In the

wake of this decision, companies are now faced with the

challenge of finding viable replacements for PHOs which

minimize the impact on organoleptic properties and

consumer acceptance. This will be particularly difficult

in certain systems which depend on the unique functional

properties of such fats, such as the plasticity of laminating

shortenings used in puff pastries and the specific melting

profiles of confectionary fats.
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Hard-stock fats such as PHOs contribute to the desirable

structural, functional, and sensorial properties of food

matrices. Consequently, they cannot generally be directly

replaced with liquid oils without negatively impacting the

organoleptic properties of the end product. A first order

approach to the problem of replacing trans-fats is to

substitute them with fats high in saturated fatty acids,

such as palm fat, fully hydrogenated vegetable oils and

animal fat [1–3�]. However, though the influence of

dietary saturated fats on health has recently taken a more

positive light, consumer perception remains generally

negative [4–7]. Therefore, the use of such fats to replace

PHOs should not be considered a viable industry-wide

alternative to remove artificial trans-fats.

In recent years, the non-triglyceride structuring of edible

oils (i.e. oleogelation) has shown strong potential as a

means to replace hard-stock fats in food products. A

variety of different systems have been identified which

can impart solid-like properties on edible oil. These can

be categorized into four main strategies: (i) the formation

of a three-dimensional network of crystalline particles; (ii)

self-assembled fibrillar networks of low molecular weight

oleogelators, (iii) polymer gelators, and (iv) structured

emulsions [3�,8–11�]. Some of the oleogelators thus far

identified may be subject to regulatory restrictions as

direct food additives, while others may be limited in their

versatility. This review will briefly outline a few of the

more promising, functionally diverse oleogel systems,

which have recently been intensively investigated for

food applications [9–13]. These include the hydrophobic

polymer ethylcellulose, several plant-based waxes, and

monoglyceride-based structured emulsions.

Polymer oleogelators
In recent years, structuring liquid oils through the use of

polymers has shown much promise for food applications.

Presently, two main strategies have been identified: (i)

directly dispersing a hydrophobic polymer in the oil phase

and (ii) indirect, facile methodologies which involve

templating hydrophilic/amphiphilic polymers. In the past

few years, the latter strategy has been exploited by Patel

et al., who have successfully identified and characterized

several polymer-based oleogel systems using both foam

[14] and emulsion [15–17] templating methodologies.

The main drawback of these systems is that they require

the use of energy intensive processes, both to produce the

initial foam/emulsion, and the subsequent dehydration

step necessary to produce the templated structure. These

critical templating steps may therefore limit industry
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acceptance. Additionally, these systems are inherently

limited in their capacity to mimic the textural properties

of hard-stock fats, as they must be sheared as a final step

to produce a semi-solid gel-like structure that exhibit

little plasticity. Currently, the only known polymer that

can be directly dispersed in edible oils for gelation is

ethylcellulose (EC). EC is a semi-crystalline derivative of

cellulose which is commercially produced to have an

ethoxyl substitution of �2.4 [18]. EC is soluble in a

variety of organic solvents, and exhibits a glass transition

temperature (Tg) at �130 8C [19], above which EC can be

dispersed in edible oils. Subsequently cooling the mix

induces the formation of inter-polymer hydrogen bonds,

creating a three-dimensional entangled polymer network

in which the liquid oil is entrapped (Figure 1)

[12,20,21]. Some examples of applications which have

been evaluated include reduction of saturated fats in

frankfurter-style meat products [12] and eliminating oil

migration in model cream fillings.

As EC oleogels must be heated in excess of 130 8C to

induce gelation, the influence of temperature on the

integrity of the oil phase is of obvious concern and

antioxidants may be added to reduce oil oxidation. This

issue was addressed by Gravelle et al., and a controlled

heating method was proposed, so as to minimize the

effects of the heat treatment on the oil phase [22]. The

versatility of EC oleogels can be attributed to the array of
Figure 1
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Top: Schematic diagram describing the factors which can be used to

modify the mechanical and textural properties of EC oleogels. Bottom:

Self-supporting EC oleogel (left) and SEM image of the internal

polymer network (right).
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strategies available to modify their mechanical properties.

For example, the influence of polymer concentration/

molecular weight, source of oil, and addition of surfac-

tants were recently characterized through the develop-

ment of a series of response surfaces designed to a priori
predict gel strength [23�].

Additional means of modifying gel strength have also

been identified, such as thermal annealing, altering sol-

vent polarity, and addition of surface active small mole-

cules. Reheating set EC oleogels to 80–100 8C for one

hour (i.e. below Tg) has been shown to significantly

increase their mechanical strength. This was attributed

to a partial rearrangement of the hydrogen-bonding net-

work supporting the gel that leads to a more extensive/

efficient gel network [24��].

Polarity of the oil phase strongly impacts both the mechan-

ical and textural traits of EC oleogels [25]. It was recently

shown that addition of castor oil to the oil phase increases

the solvent polarity, and produced up to an �8-fold in-

crease in gel strength (Figure 2a) [26��]. Conversely, min-

eral oil (a non-polar solvent) deteriorated the ability of EC

to form a gel. The influence of these oils on gel strength was

interpreted using Hansen solubility theory [27]. This for-

malism was developed to interpret solvent-polymer com-

patibility using the dispersive, polar, and hydrogen

bonding interaction energies. According to this theory,

optimal dissolution can be achieved by minimizing the

interaction distance between the polymer and solvent, Rp,s

(see Figure 3c) [27]. However, consistent with recent

studies investigating 12-hydroxystearic acid organogels

[28] and EC gels of glycerol monooleate/vegetable oil

blends [29�], EC/oil interactions could be optimized by

minimizing the difference in the hydrogen bonding pa-

rameters alone, as confirmed by the zero shear rate viscosity

(Figure 3d) [26��]. Finally, polar, surfactant-like small

molecules such as oleic acid and oleyl alcohol have a

dramatic influence on gel strength, particularly at low

incorporation levels (as low as 0.25 wt%) [26��]. The influ-

ence of these additives on the relative increase in gel

strength was shown to fit a characteristic site-specific

binding curve, up to a supplementation level of

�7.5 wt%, according to the equation Frel ¼ 1 þ Fmax
rel �

½fs=ðKd þ fsÞ� (see Figure 2b). Further addition led to

an excess of these molecules that had a plasticizing effect

on the polymer network, thus decreasing gel strength.

Presently, one of the most challenging aspects of applying

oleogels to food systems is the difficulty in accurately

mimicking the textural properties of traditional fats. In

this regard, EC oleogels appear to show great potential.

The influence of surfactants on these gels has been well

documented, and may provide one means to modify

textural properties [19,23�]. In addition to enhancing

gel strength, increasing the polarity of the oil phase

can completely eliminate oil loss upon deformation and
www.sciencedirect.com
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Figure 2
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(a,b) Mechanical strength of EC oleogels with additives to modify solvent quality (fs indicates the mass fraction of the oil phase replaced). (a)

Influence of castor oil (open circles) and mineral oil (filled diamonds) on gel strength. (b) Effect of oleic acid (filled circles) and oleyl alcohol (open

triangles). Fitted parameters Fmax
rel and Kd represent the maximum relative force and the Langmuir dissociation constant, respectively. (c)

Interaction distance between ethylcellulose and blends of soybean oil/castor oil, according to Hansen solubility theory: solid line: full formalism

(Rj,k); dashed line: hydrogen bonding parameter only. (d) Zero shear rate viscosity of ethylcellulose in soybean oil/castor oil blends. Viscosity

measured at 150 8C to avoid influences of gelation.

Source: Adapted from Gravelle et al., 2015 [26��].
greatly increase the elasticity of these gels. Similarly, the

presence of oleic acid or oleyl alcohol can also eliminate

oil expulsion and improves elasticity and resilience. The

ability to mimic both the functional and textural attri-

butes of hard-stock fats would be a large step forward in

the field of oleogelation, and presently such strategies are

actively being explored.

Plant-based wax oleogels
Natural plant-based waxes gel liquid oils at concentra-

tions as low as 1–4 wt% by forming a three-dimensional

network that entraps oil within its pores and by adsorbing

oil onto the surface of the network [9,30–33]. Rice bran

wax (RBX), candelilla wax (CLX), and carnauba wax

(CRX) have been given GRAS status by the US FDA.

They are therefore promising oil structuring agents be-

cause they are commercially available and relatively

inexpensive considering the amount required for gela-

tion. The rheological properties of wax oleogels can be

matched with that of PHOs depending on the type and

concentration of wax, and by utilizing various processing

conditions.
www.sciencedirect.com 
Wax oleogels are formed by heating wax-oil mixtures

above the melting range until the wax particles are fully

dissolved, followed by subsequently cooling the melt,

either statically, or under shear [11�]. The morphology

and aggregation of the three-dimensional structure of wax

oleogels are determined by the chemical composition of

the waxes, concentration employed, and processing con-

ditions, such as shear and cooling rate [31–37].

The oil-binding properties of RBX, CLX, CRX, and

sunflower wax (SFX) have been examined by a few

research groups [31–34�,36,37]. As shown in Figure 3,

these four plant waxes form different crystal microstruc-

ture in canola oil, and the critical gelation concentration

(Cg) of RBX, SFX, CLX and CRX were 1, 1, 2, and 4 wt%

[31,33]. The oil binding capacity of these plant waxes was

shown to be directly affected by the crystal morphology

and the organization of the three-dimensional network,

where a higher oil-binding capacity was associated with

an even distribution of mass and larger crystal size

[31,33]. Among these four plant waxes, CLX oleogels

exhibited the highest oil binding capacity [31]. The
Current Opinion in Food Science 2016, 7:27–34
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Figure 3
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Bright field light micrographs of wax organogels consisting of canola oil and rice bran wax (a), sunflower wax (b), candelilla wax (c) and carnauba

wax (d) at relatively high concentrations of 10% (w/w).

Source: Adapted from Blake and Marangoni, 2015 [31].
three-dimensional network of CLX oleogels had the

smallest crystals and lowest spatial distortion, character-

ized by the highest fractal dimension, resulting in a higher

surface area, leading to smaller pores which are able to

more efficiently immobilize the oil phase (Figure 3c)

[31]. In addition to the structure and concentration of

plant waxes, minor components naturally present in wax

and the chemical nature of the oil phase was found to

modify the microstructural morphology and thermal and

rheological properties of these gels [31,36–38�]. For ex-

ample, a comparatively lower concentration of wax is

required for gelling vegetable oils that have a lower

degree of unsaturation [36].

External factors, including shear and cooling rate, affect

the crystal morphology and oil-binding capacity of wax

olegels in a complex way. As a result, controlled, shear-

induced microstructural changes provide a means to tailor

the oil binding capacity of these oleogels, based on the

type of wax employed [32,34�,39]. For example, the

application of shear increased the oil-binding capacity

of RBX gels under slow cooling rates by creating a

tortuous network of loosely bound oil, whereas shear
Current Opinion in Food Science 2016, 7:27–34 
decreased the oil-binding capacity of CLX gels by pro-

moting the formation of larger crystals resulting in re-

duced surface area. Therefore, RBX would be a more

appropriate gelator for processing conditions involving

shear [34�].

Due to the versatility and thermal reversibility of plant

wax oleogels, their use has been explored in several

different food applications, such as fat reduction in ice-

cream (RBX), cookies (SFX), margarine (SFX oleogels

and emulsions) as well as other food systems [40–42].

When applying wax olegels in food systems, the presence

of water could interfere with the structure of oleogels,

therefore emulsion systems incorporating wax oleogels

may become an intergrade alternative structuring strategy

[35��,42].

Structured emulsions
Structured emulsions are another systems that have been

shown to be promising alternatives to PHOs, as they can

be formulated to have a solid-like structure similar to

that of hard-stock fats [43]. Monoglycerides (MGs) are

commonly used food emulsifiers that self-assemble into
www.sciencedirect.com
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lamellar, cubic or hexagonal phases in both hydrophobic

and hydrophilic systems [44–48]. MGs form structured

oil-in-water emulsions when the system contains greater

than 10 wt% but less than 70 wt% oil [49,50]. These

MG-structured emulsions have been shown to be an

effective low fat alternative for PHO-based shortenings

[34�,49,51].

MG-structured emulsions are prepared by adding the oil

phase (liquid oil, MGs, and co-emulsifiers) into the water

phase (water, preservatives, and polysaccharides) using a

low energy emulsification process [49]. Before homoge-

nization, the oil phase and the water phase must be

heated above the Krafft temperature (Tk) to melt the

hydrocarbon chains of the MG molecules [50]. Upon

homogenization, the oil phase is added to the water

phase, provoking the MG molecules to self-assemble into

an La liquid crystalline phase [50]. When the system is

subsequently cooled below Tk, the hydrocarbon chains of

the MG molecules lose their mobility, initiating a transi-

tion to the Lb phase (i.e. the a-gel phase) [52,53]. The

resulting emulsions have an onion-like structure consist-

ing of an oil droplet surrounded by alternating MG

bilayers and water (Figure 4a) [54]. The hydrated lamellar

structure of the a-gel phase has a fat-like texture, making

these structured emulsions ideal substitutes for products

such as margarines (see Figure 4b) [50,55,56]. Further-

more, as the stabilized oil droplets are essentially encap-

sulated by the concentric MG bilayers, it is possible to

incorporate various lipophilic nutrients in the oil phase

[49,57–59].

The difficulty in using MG-structured emulsions is that

the a-gel phase is thermodynamically unstable and

upon aging, it will undergo a polymorphic phase tran-

sition into a more densely packed coagel phase, reduc-

ing the space between the MG bilayers, and resulting in
Figure 4

WOil

(b)(a)

(a) Architecture of MG-structure emulsion; (b) an emulsion in the a-gel phas

between concentric MG bilayers; and (c) coagel phase in which the MG-mo

reducing their ability to retain water.
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water expulsion (Figure 4c) [52]. The water-swelling

capacity of the a-gel phase can be enhanced by incor-

porating negatively charged co-emulsifiers into the

MG-bilayers. These co-emulsifiers improve the a-gel

stability by increasing the electrostatic repulsion be-

tween bilayers to increase water layer thickness, dis-

rupting the polymorphic phase transition as a block unit

in the highly organized MG molecules of the bilayer

structure [55,56,60,61�]. Sodium stearoyl lactylate

(SSL) are negatively charged molecules which naturally

crystallize in the a form, and therefore function as an

effective co-emulsifier in MG-structured emulsions to

slow down the transition into the coagel phase [62]. In-

creasing the concentration of SSL in MG up to 20 wt%

has been shown to stabilize the a-gel phase up to two

months under accelerated shelf life tests [61�]. Other

factors such as pH and ionic strength also need to be

taken into consideration when formulating these struc-

tured emulsions in order to form a stable a-gel phase

[56,63�]. In terms of processing conditions, slow cooling

rates have been shown to improve the stability of the a-

gel phase by providing more time to form fully hydrat-

ed lamellar structures, while shear accelerates this

polymorphic transition by disrupting the formation of

hydrated lamella [54,61�,64,65]. Storage under refriger-

ation temperatures has also been shown to delay the

polymorphic transition of MG-structured systems and

achieved a-gel stability for over three months [66�].

MG-structured emulsions can be tailored to exhibit a

wide variety of textures and mechanical properties for

bakery products such as cookies and puff pastries

[35��,51]. The unique architecture of these structured

emulsions makes it possible to incorporate various types

of liquid oils to the system without dramatically altering

the rheological properties [49,57,58]. Several other co-

emulsifiers, such as sodium stearate, diacetyl tartaric acid
ater Water

(c)
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e of the MG-water system where thick layers of water are structured

lecules become tilted and more densely packed in the bilayers and
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Figure 5

Conventional Oil Structuring

Spherulite
(Crystal Aggregate)

Liquid Oil 100μm

Liquid
Oil

Hydrated
Monoglyceride

Bilayer

Water

SSL

Wax/Gel
Network 1μm

Unconventional Oil Structuring

Current Opinion in Food Science

Schematic diagram of a MG-based structured emulsion, adapted from Blake and Marangoni, 2015 [35��]. The textural and functional properties of

these emulsions can be tailored by structuring the oil phase, either by incorporation of fats or non-traditional structuring agents, such as plant-

based waxes and polymeric organolgelators.
ester of mono and diglycerides, lecithin and phospholip-

ids have also been identified which stabilize the a-phase,

and can be selected based on the pH and formulation

requirements [56,59,61�,67–70]. Finally, one of the most

promising aspects of MG-structured emulsions is the

ability to tailor their rheological properties, either by

adjusting the MG chain length, or by introducing orga-

nogelaters or palm fats to the oil phase to enhance

laminating properties (Figure 5) [13,35��,42,49–51,58].

Concluding remark
A successful approach to the replacement of trans-fat with

alternatives will involve the combination of several strat-

egies, such gelled oil within structured emulsions and/or

combination of oleogelators, in order to achieve the

desired functional properties. One such example is shown

in Figure 5 where oil gelled with waxes is entrapped

within an emulsion structured with monoglyceride hy-

drated multilayers.
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